This article was downloaded by:

On: 27 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

Theoretical Study and Comparasion of Bent's Rule with Hardness and **Polarizibility for SF₄, SF₄O, PCl₄F, PCl₃F₂, PCl₂F₃, PCl₂F₄ Molecules Fatma Kandemirli^a; Meral Hoscan^b; Anatoly Dimoglo^c; Seval Esen^b**

^a Department of Chemistry, Kocaeli University, Izmit, Turkey ^b Department of Physics, Kocaeli University, Izmit, Turkey ^e Institute of Applied Physics, Academy of Sciences, Moldova

To cite this Article Kandemirli, Fatma, Hoscan, Meral, Dimoglo, Anatoly and Esen, Seval (2008) 'Theoretical Study and Comparasion of Bent's Rule with Hardness and Polarizibility for SF₄, SF₄O, PCl₂F₃, PCl₂F₄, PCl₂F₄, Molecules', Phosphorus, Sulfur, and Silicon and the Related Elements, 183: 8, 1954 – 1967

To link to this Article: DOI: 10.1080/10426500701839577 **URL:** http://dx.doi.org/10.1080/10426500701839577

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material. Phosphorus, Sulfur, and Silicon, 183:1954-1967, 2008

Copyright © Taylor & Francis Group, LLC ISSN: 1042-6507 print / 1563-5325 online DOI: 10.1080/10426500701839577

Theoretical Study and Comparasion of Bent's Rule with Hardness and Polarizibility for SF₄, SF₄O, PCl₄F, PCl₃F₂, PCl₂F₃, PCl₂F₄ Molecules

Fatma Kandemirli,¹ Meral Hoscan,² Anatoly Dimoglo,³ and Seval Esen²

¹Department of Chemistry, Kocaeli University, Izmit, Turkey

Electronic parameters such as HOMO-LUMO energies, Mulliken charges, dipole moments for different isomers of SF_4 , SF_4O , PCl_4F , PCl_3F_2 , PCl_2F_3 , PCl_2F_4 molecules have been carried out at the MP2 level of theory using 6-31G(d), 6-311G(d,p) basis sets by applying Gaussian 03 Revision B-04. Maximum hardness and minimum polarizability have been calculated to see the consistency with the Bent rule. According to Maximum Hardness Principles (MHP) and Minimum Polarizability Principles (MPP) most stable structure can be predicted if they have different isomers. We have investigated how bond orbitals change for studied molecules by natural bond orbital (NBO) analysis, as well. There is agreement between our results and experimentagl results on the dipole moments and structures of the phosphorus

chlorofluorides obtained by IR and Raman vibrational data, NMR measurements and ³⁵Cl pure quadrupole resonance frequencies reported earlier by Holmes aand

Keywords IR; maximum hardness; minimum polarizibility; MP2; NBO

INTRODUCTION

coworkers.

Bent's rule, 1,2,3,4 that is expressed as, atomic s character's tendency to concentrate in orbitals that are directed toward electropositive groups and atomic p character's tendency to concentrate in orbitals that are directed toward electronegative groups, has proved to be useful in explaining many aspects of the structural chemistry of organic and inorganic compounds, 5 accordance with the maximum hardness and minimum polarizibility principles. 6

Received 13 August 2007; accepted 13 September 2007.

Address correspondence to Dr. F. Kandemirli, Department of Chemistry, Kocaeli University, Umuttepe Kocaeli, Turkey. E-mail: fkandemirli@yahoo.com

²Department of Physics, Kocaeli University, Izmit, Turkey ³Institute of Applied Physics, Academy of Sciences, Moldova

Grim et al. 7 have reported an apparent exception to Bent's rule, and, on the basis of this and other considerations, the Rule was modified in terms of orbital energy matching and overlap: "The p character tends to concentrate in orbitals with weak covalency (arising from either electronegativity or overlap considerations), and s character tends to concentrate in orbitals with strong covalency (matched electronegativities and good overlap)."

MHP^{9,10,11} and MPP¹² principles are among the most widely accepted electronic structure principles of chemical reactivity and validity for nontotally symmetric vibrations.¹³

The absolute hardness of a chemical species is given as following by

$$\eta = 1/2 \left(\frac{\partial^2 E}{\partial N^2} \right)_{v} \tag{1}$$

where E is the electronic energy; N is the number of electrons; and υ is the external potential due to the nuclei. Absolute hardness is an important property, which measures both the stability and reactivity of a molecule. ^{14,15,16} In molecular orbital theory, e.g., Hartree-Fock theory or Huckel theory, it is given as following,

$$\eta = (\varepsilon_{LUMO} - \varepsilon_{HOMO})/2. \tag{2}$$

Equation (2) is a good approximation as first emphasized by Pearson. ¹⁷ In this paper, we have taken Equation (2) as our working definition of hardness. If we make the usual diagram of the MOs of a molecule as a function of their energies, η is just half the energy gap between HOMO and LUMO. ⁷

It has been suggested that the hardness is inversely proportional to the electric dipole polarizability (α). The electric dipole polarizability is a measure of the linear response of the electron density in the presence of an infinitesimal electric field, F, and represents a second-order variation in the energy.

$$\alpha = \left(\frac{\partial^2 E}{\partial F_a \partial F_b}\right) \quad a, b = x, y, z$$

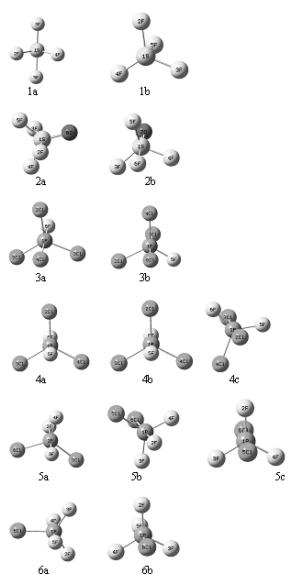
Its mean value is given in Equation (3):

$$\alpha = \frac{1}{3}(\alpha_{xx} + \alpha_{xx} + \alpha_{zz}). \tag{3}$$

The DFT based reactivity descriptors hardness and polarizability are used as reactivity indices to predict the stability sequences of axial and equatorial isomers of SF₄, F₄O, PCl₄F, PCl₃F₂, PCl₂F₃, PCl₂F₄ compounds using the maximum hardness and minimum polarizability

principles (MHP and MPP) by Noorizadeh.⁶ Huckel-type molecular orbital calculations were carried out. Stabilization of certain isomers occurs because of σ bonding and is not due to more favorable π bonding or d-orbital participation, although both are present to some extent.¹⁸

The infrared, Raman, ¹⁹F NMR and ³⁵Cl pure nuclear quadrupole resonance spectra for PCl₄F, PCl₃F₂, PCl₂F₃, and PClF₄ were studied previously by Holmes and coworkers and it was found that the spectra of PCl_4F were interpreted in terms of C_{3v} , that of PCl_3F_2 is D_{3h} , that of PCl_2F_3 is C_{2v} and that of $PClF_4$ is C_{2v} . $^{19-22}$ Also, they studied atomic polarization, dielectric properties, and electric dipole moments of PCl₄F, PCl₃F₂, and PCl₂F₃. ^{19,23-24} Most of this experimental data was summarized in an Accounts of Chemical Research article by Holmes.²⁵ In this paper, SF₄, SF₄O, PCl₄F, PCl₃F₂, PCl₂F₃, and PCl₂F₄ compounds have been selected. Further, both the hardness and the dipole polarizability for the isomer states have been calculated, and Mulliken charges, bond lengths and bond angles, and dipole moment have been calculated by using MP2 model and 6-31G(d), 6-311G(d,p) basis sets. The bond properties different isomers and IR spectra of stable isomers of PCl_xF_{5-x} (x=1,4) by natural bond orbital (NBO) analysis were calculated, as well.


CALCULATION METHODS

Optimized structural geometries and energies were determined for all the above mentioned compounds by MP2 method using 6-31G(d) and 6-311G(d,p) basis sets, Vibrational frequencies were calculated for optimized structures without any scaling factor in order to check if there was a true minimum. For each structure zero-point energy (ZPE) correction had been taken into account in calculating the energies. All quantum chemical calculations were accomplished by program Gaussian 98.²⁶

RESULTS AND DISCUSSION

We have studied SF_4 , SF_4O , PCl_xF_{5-x} (x=1,4) molecules. Different isomers of the optimized structures for studied molecules using MP2/6-31G(d) method are given in Figure 1.

 SF_4 molecules have two isomers according to lone pairs are located axial and equatorial position. A lone pair of electrons is a pair of electrons in the valence shell of an atom that is not engaged in bonding. Lone pairs are important both structurally and chemically. They influence

FIGURE 1 Optimized structure of different isomers of SF_4 , SF_4O , PCl_4F , PCl_3F_2 , PCl_2F_3 , PCl_2F_4 molecules calculated with MP2/6-311G(d,p).

the shape of a molecule by exerting strong repulsive forces on the electron pairs in neighboring bonds and other lone pairs. Gillespies has suggested that a lone pair can be considered to be a "substituent" with an effective electronegativity of zero since the lone pair is under the complete

control of a single nucleus. 27 SF₄O molecules have also two isomers according to oxygen atom are located axial and equatorial position. The calculated energies including the zero point energy, and $\varepsilon_{\text{HOMO}}$, $\varepsilon_{\text{LUMO}}$, and hardness and polarizability values for the isomers of SF₄, and SF₄O molecule are given in Table I, and the type of formed bond between the pair of atoms are summarized in Table II. Equatorial S-F NBO for 1a isomer is formed from an $sp^{6.63}d^{1.12}$ hybrid (11.44% s, 75.79% p, 12.78% d - character) on sulfur interacting with an $sp^{5.32}$ hybrid (15.79%) s, 84.08% p- character) on florur. Equatorial S-F bond is written as lineer combination of sulfur and oxygen atoms as $\psi_{S-F} = (0.490sp^{6.63}d^{1.12})_S +$ $(0.872sp^{5.32})_F$. Bond energy of that is -1.17280 au. Axial S-F NBO bond for 1a isomer is consist of $sp^{8.60}d^{5.31}$ (6.70% s, 57.67% p, 35.62% d - character) sulfur orbitals and $sp^{6.18}(13.92\%)$ s, 86.00% p- character) florur orbitals $\psi_{S-F} = (0.402sp^{8.60}d^{5.31})_S + (0.915sp^{6.18})_F$ and its energy is -0.93360au, and axial Lone pair for 1a isomer consist of $sp^{0.46}$. The electronegativity of sulfur orbitals for equatorial position appears more than axial position, and the s character of S-F bond in equatorial positionda is more than that of in axial position. Equatorial S-F NBO bond for 1b isomer is formed from an $sp^{12.93}d^{3.11}$ hybrid (16.54%% s, 50.95% p, 32.51% d - character) on sulfur interacting with an $sp^{6.75}$ hybrid (14.75%) s, 85.15% p- character) on florur, and the S-F bond formed as a lineer combination of sulfur and oxygen atoms is written as. $\psi_{S-F} = (0.428sp^{12.93}d^{3.11})_S + (0.904sp^{6.75})_F$, and its energy is -0.97485au . Axial S-F bond for 1b isomer includes $sp^{3.96}d^{2.36}$ for S $(13.65\% \text{ s}, 54.13\% \text{ p}, 32.22\% \text{ d} - \text{character}) \text{ atom and. } sp^{6.29} (13.70\%)$ s, 86.17%) p- character) for F. Axial S-F NBO bond may be written as $(0.458sp^{3.96}d^{2.36})_S + (0.889sp^{6.29})_F$ and its energy is -1.07085 au. Lone pair for 1b isomer is $sp^{0.32}$

According to the Bent rule, less electronegative substituent occupies the equatorial position. The calculated energies and hardness values of SF₄ show that 1A isomer has less energy than 2A isomer and therefore 1A isomer must be more stable, so the result is in accordance with Bent rule and the calculated energies with B3LYP method by Noorizadeh.⁶ 1A isomer has less polarizability for basis sets so according to MPP 1A isomer must be more stable than 2A isomer. Hardness values calculated with 6-31G(d) basis set for 1A isomer are less than 2A isomer, this is not in accordance with Bent rule, but calculated with 6-311 G(d) basis set for 1A isomer is more stable than 2A isomer, the result is in accordance with Bent rule. The same result is also found in Noorizadeh paper,⁶ and therefore, it is clear that for MHP calculations large basis sets are needed. The calculated energies including the zero point energy and MHP, and MPP show that 2A isomer is more stable for SF₄O molecule so they are in accordance with Bent rule.

TABLE I	Calculated Ene	lated Energies with MP2, Including Zero-Point Energy, $arepsilon_{HOMO}, arepsilon_{LUMO},$ MHP and MPP	P2, Including	g Zero-Poin	t Energy,	$arepsilon_{HOMO}, arepsilon_{L\lambda}$	NMO, MHP	and MPP	
${ m SF}_4$	SF_4 E+ ZPE(au)	$\varepsilon_{HOMO}(\mathtt{au})$	$\varepsilon_{LUMO}(\mathtt{au})$	μ	$\alpha_{\rm XX}$	$lpha_{YY}$	lpha ZZ lpha	$\pi \alpha \theta$	Symmetry
6-31G(d)									
1a	-795,979173	-0.32224	-0.08427	0,118985	26,918	21,659	16,759	21,77867	C_{2V}
2a	-795,946979	-0,30060	-0.06229	0,119155	26,267	26,267	18,415	23,64967	C_{3V}
6-311G(d,p)									
la	$-796,\!219888$	-0.32520	-0,08405	0,120575	27,030	20,351	15,090	20,82367	
2a	-796,186127	-0,30517	-0.06854	0,118315	26,323	26,323	16,845	23,16367	
$\mathrm{SF}_4\mathrm{O}$									
6-31G(d)									
1b	-870,983885	-0,39139	-0,09122	0,150085	22,284	23,855	25,443	23,86067	C_{2V}
2b	-870,946217	-0,39121	-0,11326	0,138975	23,523	23,523	27,533	24,85967	C_{3V}
6-311G(d,p)									
1b	$-871,\!254644$	-0,39747	-0,08909	0,15419	20,816	22,770	24,278	22,62133	
2b	$-871,\!217419$	-0,39762	-0,11320	0,14221	22,234	22,234	26,612	23,69333	

TABLE II Calculated with MP2/6-311G(d,p) S-F NBO Bonds for SF₄ and SF₄O Molecules

1a	1b			
$S_1 - F_{2,4(eq)} = (0.490sp^{6.63}d^{1.12})_S + (0.872sp^{5.32})_F$	$S_1 - F_{2,3,4(eq)} = (0.428sp^{12.93}d^{3.11})_S + (0.904sp^{6.75})_S$			
$S_1 - F_{3,5(ax)} = (0.402sp^{8.60}d^{5.31})_S + (0.915sp^{6.18})_F$	$S_1 - F_{5(ax)}$ $(0.458sp^{3.96}d^{2.36})_S + (0.889sp^{6.29})_F$			
Lone pair $sp^{0.46}$	Lone pair $sp^{0.32}$			
2a	2b			
$S_1 - F_{4,5(eq)} = (0.454sp^{3.08}d^{1.97})_S + (0.891sp^{5.77})_F$	$S_1 - F_{3,4,5(eq)} = (0.439sp^{2.03}d^{2.09})_S + (0.899sp^{5.03})_B$			
$S_1 - F_{2.3(ax)} = (0.457sp^{2.59}d^{2.14})_S + (0.890sp^{5.36})_F$	$S_1 - F_{6(ax)}$ $(0.452sp^{3.92}d^{2.78})_S + (0.892sp^{6.84})_F$			
$S_1 - O_{6(eq)}$ $(0.595sp^{1.85}d^{0.25})_S + (0.804sp^{3.20})_F$	$S_1 - O_{2(ax)} = (0.572sp^{1.61}d^{0.71})_S + (0.820sp^{3.16})_F$			

Bond length, bond angles and Mulliken charges for both SF_4 , and SF_4O molecules are summarized in Table III. In SF_4 , the axial FSF angle is compressed moderately (-9.07°) from VSEPR effects from the lone pair. Viewed from VSEPR effects , the greater compression of the equatorial FSF angle $(-17,74^\circ)$ is surprising, since 90° interactions (lone pair-axial fluorine) are more intense than 120° interactions (lone pair-equatorial fluorine). The decrease in FSF, angle results in part from the added effect of Bent's rule: The lone pair attracts s character, leaving more p character and a smaller bond angle for the fluorine atoms. In SF_4O molecule the axial FSF angle is compressed moderately (-9.07°) from VSEPR effects from the lone pair $(-7,14^\circ)$. The greater electronegativity of oxygen makes the three equatorial substituents comparable and the deviations from ideality are small. In 2a isomers of

TABLE III Mulliken Charges and Geometric Parameters of Stable Isomers SF₄ and SF₄O Molecules

SF ₄	6-31G(d)	6-311G(d,p)	$\mathrm{SF_4O}$	6-31G(d)	6-311G(d,p)	
Atoms no.	Bond 1	lengths (Å)	Atoms no.	Bond 1	lengths (Å)	
1S-2F	1.587	1.575079	1S-2F	1.626	1.629	
1S-3F	1.665	1.676846	1S-4F	1.589	1.578	
			1S-6O	1.438	1.422	
	Bond ar	ngle (degree)		Bond ar	ngle (degree)	
2F-1S-5F	87.16	87.54753	2F-1S-5F	85.30	85.42	
3F-1S-5F	170.93	172.18905	2F-1S-3F	162.95	163.49	
2F-1S-4F	102.26	102.15752	4F-1S-5F	112.86	98.26	
			5F-1S-6O	123.57	123.76	
Atoms no.	Mulliken at	tomic charges(ē)		Mulliken atomic charges(
1S	1.457	1.378338	1S	1.646	1.553	
2F	-0.312	-0.286497	3F	-0.343	-0.329	
3F	-0.416	-0.402672	4F	-0.270	-0.252	
			6O	-0.420	0.392	
μ	0.9626	1.1134	μ	1.004	0.766	

 SF_4O molecule S-F equatorial bonds consist of s(16.54%), p(50.95%), and d (32.51%). When oxygen is placed instead of lone pair, the s character incread from 11.44 to 16.54% and d character increased 12.78 to 32.51%, too, but p character decreased from 75.79 to 50.95%. Because of decreasing p character more than increasing of d character in equatorial position S-F bond for SF_4O molecule is longer than that of SF_4 .

Pentacoordinated phosphorus compounds generally have a trigonal bipyramidal structure. Two geometric isomers are possible for compounds such as PCl_4F . In one isomer (C_{3v}) the fluorine atom occupies an axial site and in the other (C_{2v}) an equatorial site. There are three isomers for PCl_3F_2 and for PCl_2F_3 . Two geometric isomers are possible for compounds such as PCl_4F_4 . In one isomer (C_{3v}) the chlorine atom occupies an axial site and in the other (C_{2v}) an equatorial site.

The calculated energies including the zero point energy, $\varepsilon_{\text{HOMO}}$, $\varepsilon_{\text{LUMO}}$, and hardness and polarizability values for the isomers of PCl_xF_{5-x} (x=1,4) molecules were summarized in Table IV. From the Bent rule the following trends are expected for the stability of different isomers for PCl_xF_{5-x} (x=1,4): The isomer (C_{3v}) in which the fluorine atom occupies an axial site is found to be the more stable for PCl₄F molecule, The isomer (D_{3h}) in which the chlorine atoms occupy an equatorial site, fluorine atoms occupy an axial site is found to be the more stable for PCl_3F_2 molecule. The isomer (C_{2V}) in which the two chlorine atoms and one fluorine atom occupy an equatorial site fluorine atoms occupy an axial site is found to be the more stable for PCl₂F₃ molecule. The isomer (C_{2v}) in which the chlorine atom occupies an equatorial site is found to be the more stable for $PClF_4$ molecule that is 3a > 3b, 4a > 3b4b > 4c, 5a > 5b > 5c, and 6a > 6b for both basis sets the energies are in accordance with the Bent rule. Hardness values show the same trend for the stability of these isomers except PCl_3F_2 calculated with 6-31G(d) basis set and is in accordance with the Bent rule too. Large basis set is needed for MMP in accordance with the Bent rule. The theoretical data on the structures agree with the previously reported structural data obtained experimentally.

The experimental spectral data of PCl_4F were best interpreted in terms of a C_{3v} structure in which the fluorine atom occupies an axial site; in PCl_3F_2 (D_{3H} point group) the fluorine atoms also assume axial positions; in $PC_{12}F_3$ data supports the C_{2v} structure. The theoretical IR spectra results of stable isomers for the series of phosphorus(V) chloroflorides are given in Table V and it appears that theorical results are agreement with the experimental ones.

Bond length, bond angles. and Mulliken charges calculated with MP2 level and 6-31G(d) 6-311G(d,p) basis sets for $PCl_xF_{5\text{-}x}$: molecules are summarized in Table VI, and the NBO bond formed bond between the

TABLE IV Calculated Energies Including Zero-Point Energy , $\varepsilon_{HOMO}, \varepsilon_{LUMO},$ MHP and MPP

$\mathrm{PCl}_4\mathrm{F}$	E+ ZPE (au)	$\varepsilon_{HOMO}(\mathrm{au})$	$\varepsilon_{LUMO}(\mathtt{au})$	h	αXX	α_{YY}	α_{ZZ}	$\pi \alpha \theta$	Symmetry
6-31G(d) 3a 3b	$\begin{array}{c} -2278,919668 \\ -2278,911001 \end{array}$	$\begin{array}{c} -0.32789 \\ -0.32238 \end{array}$	$-0.15509 \\ -0.15527$	0,0864	61,912 69,200	61,912 61,041	54,140 44,705	59,32133 58,31533	C_{2V}
$egin{array}{l} 9-911G(a,p) \\ 3a \\ 3b \\ PCl_3F_2 \end{array}$	$\begin{array}{c} -2279,117514 \\ -2279,109731 \end{array}$	-0.32807 -0.32249	$^{-0,15611}_{-0,15569}$	0,0859	62,200 $71,647$	62,200 61,413	56,954 46,782	60,45133 59,94733	
6-31G(d) 4a 4b 4c 6-311G(d)	$\begin{array}{c} -1918,947538 \\ -1918,939530 \\ -1918,932287 \end{array}$	$\begin{array}{c} -0.34649 \\ -0.32928 \\ -0.32854 \end{array}$	$\begin{array}{c} -0.12217 \\ -0.13698 \\ -0.13047 \end{array}$	0,11216 0,09615 0,099035 0	56,190 48,085 32,444	56,190 39,202 61,581	32,856 56,141 47,357	48,412 47,809 47,127	$\begin{array}{c} \rm D_{3H} \\ \rm C_S \\ \rm C_{2V} \end{array}$
4a $4b$ $4c$ $7c$ $7c$ $7c$ $7c$ $7c$ $7c$ $7c$ 7	$\begin{array}{c} -1919,170393 \\ -1919,163419 \\ -1919,156712 \end{array}$	-0.34661 -0.32936 -0.32768	-0,12252 $-0,13702$ $-0,13128$	0,112045 0,09617 0,0982	55,723 49,459 33,447	55,723 39,878 63,069	34,217 55,549 48,019	48,55433 48,29533 48,17833	
6-31G(d,p) 5a 5b 5c 6-311G(d,p) 5a 5c	-1558,967937 -1558,961041 -1558,954461 -1559,217069 -1559,204113	-0,34699 -0,33426 -0,34771 -0,34705 -0,33390 -0,34776	-0,10505 -0,11324 -0,10058 -0,10390 -0,11368 -0,09931	0,12097 0,11051 0,123565 0 0,121575 0,11011 0,124225	50,571 39,375 28,149 49,493 39,048 28,440	28,746 44,565 28,149 28,772 45,061 28,440	33,864 28,169 54,045 33,584 27,902 54,670	37,727 37,36967 36,781 37,283 37,337 37,18333	$ ho_{2V}^{C_{2V}}$
6-31G(d) 6a 6b 6-311G(d) 6a 6a	-1198,989693 -1198,983550 -1199,264991 -1199,258514	-0,35215 -0,35291 -0,35221 -0,35265	$\begin{array}{c} -0.08060 \\ -0.08096 \\ -0.07927 \\ 0.07941 \end{array}$	0,135775 0,135975 0,13647 0,21603	24,455 23,845 23,563 23,013	23,875 23,845 22,764 23,013	36,008 35,933 35,022 35,390	28,11267 27,87433 27,11633 27,13867	C_{2V} C_{3V}

	P	Cl ₄ F	PO	$\mathrm{Cl}_3\mathrm{F}_2$	PO	$\mathrm{Cl}_2\mathrm{F}_3$	P	ClF ₄
No	$\overline{Freq_{(exp)}}$	$Freq_{(theor)^a}$	$\overline{Freq_{(exp)}}$	$Freq_{(theor)^a}$	$\overline{Freq_{(exp)}}$	$Freq_{(theor)^a}$	$\overline{Freq_{(exp)}}$	$Freq_{(theor)^b}$
1	778	762	867	877	925	921	921	996
2	601	601	633	635	902	913	903	948
3	422	419	625	629	665	673	895	886
4	388	388	404	411	500	655	691	687
5	339	341	387	390	488	514	560	566
6	297	306	357	356	427	495	510	542
7	265	268	328	333	407	430	490	497
8	110	108	122	121	368	411	434	492
9	_	_	_	_	368	361	356	437
10	_	_	_	_	338	344	356	357
11	_	_	_	_	124	124	144	171
12	_	_	_	_	124	156	144	146

TABLE V Fundamental Frequencies of PCl_xF_{5-x} (x=1,4)

pair of atoms are summarized in Table VII. Equatorial P-Cl NBO bond for PCl₄F, PCl₃F₂, PCl₂F₃, and PClF₄ as seen from the Table VII are character on P atom), $(0.594sp^{3.13}d^{0.71})_P + (0.804sp^{6.25})_{Cl}, (20.67\%\%)_{Cl}$ s, 64.70% p, 14.63% d - character on P atom), $(0.589sp^{3.00}d^{0.69})_P$ + $(0.808sp^{6.69})_{Cl}$, (21.31%% s, 63.92% p, 14.77% d – character on P atom), and $(0.589sp^{2.84}d^{0.70})_P + (0.812sp^{7.25})_{CL}(2203\%\% s, 62.51\% p, 15.46\%)$ d - character on P atom), respectively. It appears that in the bond formation, the polarization coefficient of P atom decreases, and the polarization coefficient of Cl atom increases in the series upon replacing chlorines with fluorines. p character of P atom in hybrid orbital decreases and s and d character of P atom in hybrid orbital increases. Axial P-Cl NBO bond is formed from $(0.535sp^{2.57}d^{1.77})_p + (0.845sp^{8.48})_{Cl}$. s, p, d characters on P atom are 18.72%, 48.18%, and 33.10%, respectively, and for axial P-Cl bond, they are 20.97%, 64.93%, and 14.10%, respectively.

Equatorial P-Cl bond length for PCl_4F , PCl_3F_2 , PCl_2F_3 , $PClF_4$ is 2.028, 2.016, 2.008, and 2.001 (Å), respectively. As the number of electronegative substituent increases P-Cl bond becomes stronger. Axial P-F bond length for PCl_4F , PCl_3F_2 , PCl_2F_3 , and $PClF_4$ is 1.624, 1.619, 1.569, and 1.563 (Å), respectively. As the number of electronegative increases axial P-F bond becomes shorter. 2Cl-1P-5Cl angle for PCl_4F is 119.96 and is 120.00 for PCl_3F_2 . Theoretical dipole moments for PCl_4F , PCl_3F_2 , PCl_2F_3 , $PClF_4$ which are given in Table VIII are 0.1921, 0.0000, 0.70030, and 7190 Debye, respectively. The results of the dipole moments give the correct isomer and the theoretical calculations are in

^aGriffiths et al.²¹; and ^bHolmes.¹⁹

TABLE VI	Bond Length,	Bond Angles,	and Mulliken	Charges for
PCl_xF_{5-x} (x	=1,4)			

PCl_4F	6-31G(d)	6-311G(d,p)	PCl_3F_2	6-31G(d)	6-311G(d,p)
Atoms No	Bond	Lengths (Å)	Atoms No	Bond L	engths (Å)
1P-2Cl	2.029	2.028	1P-2 Cl	2.018	2.016
1P-4 Cl	2.12	2.145	1P-5F	1.624	1.619
1P-6F	1.630	1.624			
	Bond A	ingle(degree)		Bond Ar	gle(degree)
2Cl-1P-5Cl	119.94	119.96	3Cl-1P-4Cl	120.00	120.00
5Cl-1P-4 Cl	91.43	91.19	3Cl-1P-6F	90.00	90.00
5Cl-1P -6F	88.57	88.81	5F-1P -6F	90.00	180.00
4Cl-1P -6F	180.00	180.00			
Atoms No	Mulliken A	tomic Charges(ē)		Mulliken Ato	omic Charges(ē)
1P	0.777	0.951			
2Cl	-0.062	-0.113	1P	1.050	1.186
4Cl	-0.210	-0.238	2Cl	-0.100	-0.143
6F	-0.379	-0.373	5F	-0.374325	-0.378
PCl_2F_3	6-31G(d)	6-311G(d,p)	$PClF_4$	6-31G(d)	6-311G(d,p)
Atoms No	Bond	Lengths (Å)	Atoms No	Bond L	engths (Å)
1P-2F	1.615	1.608	1P-2F	1.576	1.563
1P-4F	1.584	1.569	1P-4F	1.606	1.598
1P-5Cl	2.009	2.008	1P-6Cl	2.001	2.001
	Bond A	ingle(degree)		Bond Ar	gle(degree)
6Cl-1P-3F	90.50	90.46	6Cl-1P-3F	120.78	120.83
6Cl-1P-4F	119.14	119.37	6Cl-1P-4F	90.95	90.85
6Cl-1P-5Cl	121.72	121.27	3F-1P-4F	89.51	89.56
3F-1P-2F	177.97	178.14	4F-1P-5F	178.10	178.29
Atoms No	Mulliken A	tomic Charges(ē)		Mulliken Ato	omic Charges(ē)
1P	1.289	1.391	1P	1.489	1.562
2F	-0.371	-0.382	2F	-0.303	-0.318
4F	-0.294	-0.316	4F	-0.3682	-0.384
5Cl	-0.126	-0.155	6Cl	-0.147	-0.156

close agreement with the experimental gas phase values, also listed in Table VIII. 25

In the series of PCl_xF_{5-x} there is a lack of transmission of electron density to axial fluorine atoms as chlorine substitution increses. As a consuquence, a reduction in the positive charge at phosphorus occurs.²⁵ Mulliken charges of P atom for PClF₄, PCl₂F₃, PCl₃F₂, and PCl₄F are 1.562, 1.391, 1.186, and 0.951ē, respectively.

Distribution of P3s character in overlap population calculated by MP2/6-31G(d,p) and Hückel theory¹⁸ are summarized in Table IX. s character of phosphorus atom in P-Cl equatorial bonds is 20.97% and in axial bonds is 18.72% for PCl₄F, s character of phosphorus atom in P-F equatorial bonds is 20.08% and in axial bonds is 18.74% for PCl₂F₃,

TABLE VII P-F NBO and P-Cl NBO Calculated with MP2/6-311G(d,p) for PCl_xF_{5-x} (x = 1,4)

3a		3b	
$P_1 - Cl_{2,3,5(eq)}$	$(0.601sp^{3.10}d^{0.67})_p + (0.799sp^{6.43})_{Cl}$	$P_1-Cl_{2,4(eq)}$	$(0.605sp^{2.94}d^{0.57})_p + (0.796sp^{6.97})_{Cl}$
$P_1 - Cl_{4(ax)}$	$(0.535sp^{2.57}d^{1.77})_p + (0.845sp^{8.48})_{cL}$	$P_1 - Cl_{3,6(ax)}$	$(0.540sp^{2.87}d^{1.86})_P + (0.841sp^{7.57})_{Cl}$
$P_1 - F_{6(ax)}$	$(0.389sp^{2.82}d^{1.60})_p + (0.921sp^{2.70})_F$	$P_1 - F_{5(eq)}$	$(0.605sp^{3.07}d^{0.72})_P + (0.9106sp^{2.51})_F$
4a	-	4b	
$P_1-Cl_{2,3,4(eq)}$	$(0.594sp^{3.13}d^{0.71})_P + (0.804sp^{6.25})_{Cl}$	$P_1 - Cl_{2,3(eq)}$	$(0.597sp^{2.98}d^{0.64})_P + (0.802sp^{6.86})_{Cl}$
$P_1 - F_{5(ax)}$	$(0.389sp^{2.62}d^{1.62})_P + (0.921sp^{2.79})_F$	$P_1 - Cl_{4(ax)}$	$(0.535sp^{2.63}d^{1.80})_P + (0.844sp^{8.25})_{Cl}$
4c		$P_1 - F_{6(eq)}$	$(0.417sp^{3.21}d^{0.72})_P + (0.908sp^{2.43})_F$
$P_1 - Cl_{4(eq)}$	$(0.602sp^{2.86}d^{0.53})_P + (0.798sp^{7.27})_{Cl}$	$P_1 - F_{5(ax)}$	$(0.390sp^{2.87}d^{1.65})_P + (0.921sp^{2.67})_{\rm Fl}$
$P_1 - Cl_{2,3(ax)}$	$(0.540sp^{2.90}d^{1.88})_P + (0.842sp^{7.33})_{Cl}$		
$P_1 - F_{6(eq)}$	$(0.416sp^{3.02}d^{0.66})_P + (0.909sp^{2.61})_F$		
5a		5b	
$P_1-Cl_{5,6(eq)}$	$(0.589sp^{3.00}d^{0.69})_P + (0.808sp^{6.69})_{Cl}$	$P_1 - Cl_{5(eq)}$	$(0.592sp^{2.83}d^{0.64})_P + (0.806sp^{7.34})_{\rm Cl}$
$P_1 - F_{4(eq)}$	$(0.418sp^{3.27}d^{0.71})_P + (0.908sp^{2.37})_F$	$P_1 - F_{4(ax)}$	$(0.418sp^{3.13}d^{0.67})_P + (0.909sp^{8.12})_F$
$P_1-F_{2,3(ax)}$	$(0.390sp^{2.67}d^{1.67})_P + (0.921sp^{2.79})_F$	$P_1-Cl_{6(ax)}\\$	$(0.390sp^{2.90}d^{170})_P + (0.921sp^{2.67})_F$
5c		$P_1-F_{2(ax)}\\$	$(0.534sp^{2.69}d^{1.83})_P + (0.845sp^{8.12})_{Cl}$
$P_1 - F_{2,3,4(eq)}$	$(0.417sp^{2.94}d^{0.61})_P + (0.909sp^{2.73})_F$		
$P_1 - Cl_{5,6(ax)}$	$(0.538sp^{2.92}d^{192})_P + (0.843sp^{7.20})_{Cl}$		
6a		6b	
$P_1 - Cl_{6(eq)}$	$(0.589sp^{2.84}d^{0.70})_P + (0.812sp^{7.25})_{Cl}$	$P_1-F_{2,3,4(eq)}\\$	$(0.418sp^{2.99}d^{0.64})_P + (0.909sp^{2.75})_{Cl}$
$P_1 - F_{2,3(eq)}$	$(0.417sp^{3.17}d^{0.67})_P + (0.909sp^{2.54})_F$	$P_1-Cl_{6(ax)}\\$	$(0.533sp^{2.74}d^{1.86})_P + (0.846sp^{8.01})_{\text{Cl}}$
$P_1 - F_{4,5(ax)}$	$(0.390sp^{2.72}d^{172})_P + (0.921sp^{2.81})_F$	$P_1-F_{5(ax)}\\$	$(0.391sp^{2.96}d^{1.78})_P + (0.920sp^{2.70})_F$

s character of phosphorus atom in P-F equatorial bonds is 20.64% and in axial bonds is 18.38% for $PClF_4$ s character of phosphorus atom is greater in equatorial bonds than in axial bonds. s character of phosphorus atom in P-Cl equatorial bonds (%22.03) is greater than of that of P-F equatorial bonds (%20.64) for $PClF_4$. As it is explained in Van Der Voorn and Drago, $PClF_4$ s character is concentrated in bonds to the more electropositive substituent.

TABLE VIII Dipole Moment Calculated with MP2/6-311G(d,p) for $PCl_xF_{5^*x}$ (x = 1,4)

			μ theoretical	
	$\boldsymbol{\mu}_{\text{experimental}^1}$	a	b	c
PCl ₄ F	0.21 ± 0.01	0.144	1.19	
PCl_3F_2	0.00 ± 0.06	0.000	1.02	1.24
PCl_2F_3	0.68 ± 0.02	0.877	1.04	0.00
PClF ₄	0.78	0.719	0.10	

 $^{^{1}}$ Holmes. 25

 $PClF_4$

MP2/6-	311G(d,p))						
	Axial	P-F	Equatori	ial P-F	Axial l	P-Cl	Equatori	al P-Cl
	Hückel ^a	NBO	Hückel ^a	NBO	Hückel ^a	NBO	Hückel ^a	NBO
PCl_4F	13.4	18.43	_	_	14.6	18.72	24	20.97
PCl_3F_2	14.5	19.07	_	_	_	_	23.6	20.67
PCl_2F_3	16.5	18.74	18.4	20.08	_	_	24.3	21.31

20.64

25

22.03

TABLE IX 3s% Character per P-X Bonds Calculated with MP2/6-311G(d,p)

19.1

18.38

18.4

CONCLUSIONS

Energy, dipole moment, and IR spectra results are a reliable parameter for predicting the stability order of different isomers of studied molecules and it is independed on the selected basis sets. it has been seen that large basis sets are needed for MHP, and MPP in consistent with stability and Bent rule. The hybrid type of formed NBO bond between the pair of atoms are calculated. Equatorial and axial bonds are formed with s, p, and d orbitals but in equatorial bonds s, p character on P is more than axial bonds for d character the inverse is true.

REFERENCES

- [1] H. A. Bent, J. Chem. Educ., 37, 616 (1960).
- [2] H. A. Bent, J. Chem. Phys., 33, 1258 (1959)
- [3] H. A. Bent, J. Chem. Phys., 33, 1260 (1960).
- [4] H. A. Bent, Chem. Rec., 61, 275 (1961).
- [5] J. E. Huheey, Inorganic Chemistry: Principles of Structure and Reactivity, (Harper & Row, New York and San Francisco, 1978). 2nd ed., pp. 145–147, 206, 227.
- [6] S. Noorizadeh, Journal of Molecular Structure: THEOCHEM, 713, 27–32 (2005).
- [7] R. G. Pearson, Proc. Natl. Acad. Sci. U.S.A., 83, 8440–8441(1986).
- [8] J. E. Huheey, Inorganic Chemistry: Principles of Structure and Reactivity, (Harper & Row, New York and San Francisco, 1978). 2nd ed., pp. 146.
- [9] R. G. Pearson, J. Chem. Educ., 64, 561 (1987).
- [10] R. G. Pearson, J. Chem. Educ., 76, 267 (1999).
- [11] R. G. Pearson, Chemical Hardness, (Wiley-VCH, Oxford, 1997).
- [12] P. K Chattaraj and S. Sengupta, J. Phys. Chem., 100, 16126 (1996).
- [13] M. Torrent-Sucarrat, J. M. Luis, M. Duran, and M. Sola, J. Am. Chem. Soc., 123, 7951-7952 (2001).
- [14] R. G. Pearson, Hard and Soft Acids and Bases (Dowden, Hutchinson, and Ross, Stroudsburg, PA, 1973).
- [15] R. G. Pearson, J. Chem. Educ., 64, 561-567 (1987).
- [16] R. G. Pearson, J. Org. Chem., 54, 1423–1430 (1989).
- [17] R. G. Pearson, Proc. Nut/. Acad. Sci. U.S.A., 8, 8440–8441. (1986),

^aVan Der Voorn and Drago. ¹⁸

- [18] P. C. Van Der Voorn and R. S. Drago, Journal of the American Chemical Society 1, 88, 14–20 (1966).
- [19] R. R. Holmes, J. Chem Phys., 46 (10), 3718–3723 (1967).
- [20] R. R. Holmes, R. P. Carter Jr., and G. E. Peterson, *Inorg Chem.*, 3 (12), 1748–1754 (1964).
- [21] J. E. Griffiths, R. P. Carter Jr., and R. R. Holmes, J. Chem Phys., 41, 863-875 (1964)
- [22] R. P. Carter Jr., and R. R. Holmes, Inorg Chem., 4 (5), 738-739 (1965).
- [23] R. R. Holmes and R. P. Carter Jr., J. Chem Phys., 43 (1), 1645-1646 (1965).
- [24] R. R. Holmes and R. P. Carter Jr., J. Chem Phys., 43 (5), 1650–1657 (1965).
- [25] R. R. Holmes, Accounts of Chemical Research., 5, 296–303 (1972).
- [26] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Akatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, GAUSSIAN 03 (Gaussian Inc., Pittsburgh PA, 2003), Revision B. 04.
- [27] R. J. Gillespie, Molecular Geometry (Van Nostrand Reinhold: London, 1972) pp 55–56.